Experimental Assesment of Fast Quantum Key Distribution

Quantum Key Distribution (QKD) is being used to enhance security between trusted users. One of the most fundamental QKD protocols is BB84, which uses single polarized photons as qubits. Polarized photons passing through a fiber between quantum transmitter (QTx) and quantum receiver (QRx) might be distorted in case of fiber movement affect the State of Polarization (SOP), which deteriorates the Key exchange rate. A novel QKD method that includes an Artificial Intelligence (AI) -based polarization distortion compensator module (named Fast QKD) is to be experimented on, in a testbed equipped with the needed instruments and devices at UCDavis California.

ProjectID

NGI-ATLANTIC:OC3-275

Acronym

EAFQKD

Additional Info

QKD relies on properties of quantum mechanics, which enables eavesdropping detection and guarantees the security of the key. Among QKD systems, polarization encoded QKD has been successfully tested in laboratory experiments and recently demonstrated in closed environments. The main drawback of QKD is its high cost, which comes, among others, from: a)the requirements for the quantum transmitters and receivers; b) the need of carefully selecting the fibers supporting the quantum channel to minimize the environmental effects that could dramatically change the polarization state of photons. The expected impact of the Fast QKD method is in facilitating the deployment of QKD systems to provide long-term data protection in a post-quantum world, by reducing its cost. On the one hand, some hardware specifications of the QTx can be relaxed as SOP imperfections can be corrected by the QRx, whereas on the other, the hardware design of the QRx can be simplified and rely on software.

Enduser Relevance

Quantum Key Distribution (QKD) is being used to enhance security between trusted users. The proposed Fast QKD method has shown its ability to increase the effective key exchange rate more than 15 times by simulation, and the experiment aims to demonstrate QKD performance in real scenarios.

Contact

Luis Velasco, (Universitat Politecnica de Catalunya)

Endorsements
Not available yet
Disclaimer

This experiment is currently underway.

Country:  Spain United States

Keyword: EPIPET

Status: Early research demo

Category: Measurement, monitoring, analysis and abuse handling

check other similar solutions